Понятия со словосочетанием «узловые точки»

Связанные понятия

В данной статье рассматриваются две параллельные прямые на плоскости Для параллельных прямых , расположенных не в одной плоскости, смотрите Скрещивающиеся прямые#расстояние.Расстояние между двумя прямыми линиями на плоскости - это наименьшее расстояние между любыми двумя точками, лежащими на линии. Или между точкой лежащей на прямой с другой параллельной прямой. В случае пересекающихся линий, расстояние между ними равно нулю, потому что минимальное расстояние между ними равно нулю (в точке пересечения...

Подробнее: Расстояние между прямыми
Вертика́ль — направление, перпендикулярное к горизонтальной плоскости. Определяется как направление линии отвеса, то есть направление вектора силы тяжести в данном месте. Кроме того...
Ло́маная, ломаная линия — геометрическая фигура, состоящая из отрезков, последовательно соединённых своими концами.
Ра́зностное уравне́ние — уравнение, связывающее значение некоторой неизвестной функции в любой точке с её значением в одной или нескольких точках, отстоящих от данной на определенный интервал.
Аксонометри́ческая прое́кция (от др.-греч. ἄξων «ось» + μετρέω «измеряю») — способ изображения геометрических предметов на чертеже при помощи параллельных проекций.
Хо́рда (от греч. χορδή — струна) в планиметрии — отрезок, соединяющий две точки данной кривой (например, окружности, эллипса, параболы, гиперболы).
Паралле́льный перено́с (иногда трансляция) ― частный случай движения, при котором все точки пространства перемещаются в одном и том же направлении на одно и то же расстояние.
Магнитный азимут Am — горизонтальный угол, измеренный по ходу часовой стрелки от северного направления магнитного меридиана до направления на предмет. Его значения могут быть от 0° до 360°.
Гиперциклы через заданную точку, имеющие одну и ту же касательную в этой точке, сходятся к орициклу по мере стремления расстояния к бесконечности.
Середина отрезка — точка на заданном отрезке, находящаяся на равном расстоянии от обоих концов данного отрезка. Является центром масс как всего отрезка, так и его конечных точек.
Гауссовская сетка используется в науках о земле, для моделирования на сфере (которая приблизительно описывает форму Земли). Сетка прямоугольная, с набором ортогональных координат (обычно широт и долгот), представляющих собой матрицу с которой легко работать.
Архимедова спираль — спираль, плоская кривая, траектория точки M (см Рис. 1), которая равномерно движется вдоль луча OV с началом в O, в то время как сам луч OV равномерно вращается вокруг O. Другими словами, расстояние ρ = OM пропорционально углу поворота φ луча OV.
Параллельные прямые (от греч. παράλληλος, буквально — идущий рядом) — в планиметрии прямые, которые не пересекаются, сколько бы их ни продолжали в обе стороны.
Эпицикло́ида (от др.-греч. ὲπί — на, над, при и κύκλος — круг, окружность) — плоская кривая, образуемая фиксированной точкой окружности, катящейся по внешней стороне другой окружности без скольжения.
Пе́ленг в навигации — горизонтальный угол между северной частью меридиана наблюдателя и направлением из точки наблюдения на объект; измеряется по часовой стрелке от нуля (направление на норд, N) до полной дуги окружности (360°, или 32 румба).
Пеленг (навигация) — угол между северной частью меридиана наблюдателя и вертикальной плоскостью, проходящей через точку наблюдения и наблюдаемый объект. Отсчитывается по часовой стрелке, принимает значения от нуля до полной дуги окружности (360°); в других дисциплинах может называться круговой азимут. Пеленг на объект для краткости может называться пеленг объекта.
Систе́ма координа́т — комплекс определений, реализующий метод координат, то есть способ определять положение и перемещение точки или тела с помощью чисел или других символов. Совокупность чисел, определяющих положение конкретной точки, называется координатами этой точки.
Арбелос (греч. άρβυλος — сапожный нож) — плоская геометрическая фигура, образованная большим полукругом, из которого вырезаны два меньших, диаметры которых лежат на диаметре большого и разбивают его на две части. Точнее, пусть A, B и C — точки на одной прямой, тогда три полуокружности с диаметрами AB, BC и AC, расположенные по одну сторону от этой прямой, ограничивают арбелос.
Касательная прямая к окружности в евклидовой геометрии на плоскости — прямая, которая имеет с окружностью ровно одну общую точку. Также можно определить касательную как предельное положение секущей, когда точки пересечения её с окружностью бесконечно сближаются. Касательные прямые к окружностям служат предметом рассмотрения ряда теорем и играют важную роль во многих геометрических построениях и доказательствах.
Пра́вильный шестисотяче́йник, или просто шестисотяче́йник, или гекзакосихор (от др.-греч. ἑξἀκόσιοι — «шестьсот» и χώρος — «место, пространство»), — один из правильных многоячейников в четырёхмерном пространстве. Двойственен стодвадцатиячейнику.

Подробнее: Шестисотячейник
Гипотрохоида — плоская кривая, образуемая фиксированной точкой, находящейся на фиксированной радиальной прямой окружности, катящейся по внутренней стороне другой окружности.
Сетка Вульфа в кристаллографии — стереографическая экваториальная проекция градусной сетки сферы из расположенного на её экваторе центра проекции, осуществляемая на плоскость меридиана, удалённого на 90° от выбранного центра. Данный меридиан называется основным меридианом сетки. Меридианы и параллели сетки Вульфа играют вспомогательную роль как проекции дуг больших и малых кругов сферы. Точки схождения меридианов называются полюсами сетки; отрезок прямой, соединяющей полюса сетки, называется осью...
В этом списке картографические проекции рассортированы по виду поверхности проектирования. Традиционно выделяют три категории проекций: цилиндрические, конические и азимутальные. Некоторые проекции трудно отнести к какой-либо из этих трёх категорий. С другой стороны, проекции можно классифицировать по характеристикам поверхности, которые они оставляют неизменными: направления, локальную форму, площадь и расстояние.

Подробнее: Список картографических проекций
Задача Наполеона — знаменитая задача построения с помощью циркуля. В этой задаче дана окружность и её центр. Задача состоит в делении окружности на четыре равных дуги с помощью только циркуля. Наполеон был известным любителем математики, но неизвестно, он ли придумал или решил эту задачу. Друг Наполеона итальянский математик Лоренцо Маскерони придумал при геометрических построениях ограничение на использование только циркуля (не использовать линейку). Но, фактически, задача выше является более простой...
Эквидистанта (лат. aequidistans — равноудалённый) для данной плоской кривой L — это множество концов равных отрезков, отложенных в определённом направлении на нормалях к L. В геометрии Лобачевского эквидистантой или гиперциклом, называется геометрическое место точек, удалённых от данной прямой на данное расстояние (в Евклидовой геометрии эквидистанта прямой есть прямая).
В математике и физике барице́нтр, или геометри́ческий центр, двумерной области — это среднее арифметическое положений всех точек фигуры. Определение распространяется на любой объект в n-мерном пространстве — барицентр является средним положением всех точек фигуры по всем координатным направлениям. Неформально — это точка равновесия фигуры, вырезанной из картона в предположении, что картон имеет постоянную плотность и гравитационное поле постоянно по величине и направлению.

Подробнее: Барицентр
Диспаратность (вариант написания — диспарантность) (от лат. disparatus — разделённый) — различие взаимного положения точек, отображаемых на сетчатках левого и правого глаза. Диспаратность изображений лежит в основе неосознаваемых психофизиологических процессов бинокулярного и стереоскопического зрения.
Маршрут (нем. Marschroute, от франц. marche — ход, движение вперёд и route — дорога, путь) — путь следования объекта, учитывающий направление движения относительно географических ориентиров или координат, с указанием начальной, конечной и промежуточных точек, в случае их наличия.
Орицикл (греч. ὅρος + κύκλος — «граница + круг»), предельная линия ― линия на плоскости Лобачевского, ортогональная к некоторому семейству параллельных прямых.
Однородные координаты ― система координат, используемая в проективной геометрии, подобно тому, как декартовы координаты используются в евклидовой геометрии.
Касание — свойство двух линий или линии и поверхности иметь в некоторой точке общую касательную прямую или свойство двух поверхностей иметь в некоторой точке общую касательную плоскость.
В геометрии трисектриса Маклорена — это кубика, примечательная своим свойством трисекции, поскольку она может быть использована для трисекции угла. Её можно определить как геометрическое место точек пересечения двух прямых, каждая из которых вращаются равномерно вокруг двух различных точек (полюсов) с отношением угловых скоростей 1:3, при этом первоначально прямые совпадают с прямой, проходящей через эти полюса. Обобщение этого построения называется Секущая Маклорена. Секущая названа в честь Колина...
Биссекторная плоскость - (от лат. bissector - «на двое рассекающий») плоскость выходящая из ребра двугранного угла, которая делит его на два равных двугранных угла.
Эллипсограф или Сеть Архимеда — это механизм, который способен преобразовывать возвратно-поступательное движение в эллипсоидное.
Мирова́я ли́ния в теории относительности — кривая в пространстве-времени, описывающая движение тела (рассматриваемого как материальная точка), геометрическое место всех событий существования тела. Иногда мировой линией называют вообще любую непрерывную линию в пространстве-времени.
Амфихиральный узел можно также определить как ориентированный узел, имеющий меняющий ориентацию гомеоморфизм трёхмерной сферы, сохраняющим узел.
Конические координаты — трёхмерная ортогональная система координат, состоящая из концентрических сфер (радиус r) и двумя семействами перпендикулярных конусов, направленных вдоль осей z и x.
Поверхность вращения — поверхность, образуемая при вращении вокруг прямой (оси поверхности) произвольной линии (прямой, плоской или пространственной кривой). Например, если прямая пересекает ось вращения, то при её вращении получится коническая поверхность, если параллельна оси — цилиндрическая, если скрещивается с осью — гиперболоид. Одна и та же поверхность может быть получена вращением самых разнообразных кривых.
Круговое движение является ускоренным, даже если происходит с постоянной угловой скоростью, потому что вектор скорости объекта постоянно меняет направление. Такое изменение направления скорости вызывает ускорение движущегося объекта центростремительной силой, которая толкает движущийся объект по направлению к центру круговой орбиты. Без этого ускорения объект будет двигаться прямолинейно в соответствии с законами Ньютона.
Вектор Бю́ргерса (b) — количественная характеристика, описывающая искажения кристаллической решётки вокруг дислокации.
Топографическая диаграмма — диаграмма комплексных потенциалов точек цепей, нанесённых на комплексную плоскость. Потенциал одной из точек цепи принимается равным нулю, и рассчитываются комплексы потенциалов всех остальных точек. Полученные комплексы потенциалов наносятся на комплексную плоскость и полученные точки соединяются отрезками прямых в соответствии со схемой.
Картографи́ческая прое́кция — математически определенный способ отображения поверхности Земли (либо другого небесного тела, или в общем смысле, любой искривлённой поверхности) на плоскость.
Петля в топологическом пространстве X — это непрерывное отображение f единичного отрезка I = в X, такое что f(0) = f(1). Другими словами, это путь, начальная точка которого совпадает с конечной.
В геометрии трилинейными полярами являются некоторые специальные виды прямой линии, связанные с плоскостью треугольника и лежащие в плоскости треугольника. Трилинейная поляра точки Y (полюса) относительно невырожденного треугольника это — прямая линия, определяемая следующим построением. Если продолжить стороны чевианного треугольника некоторой точки и взять их точки пересечения с соответствующими сторонами, то полученные точки пересечения будут лежать на одной прямой, называемой трилинейной исходной...

Подробнее: Трилинейные поляры треугольника
Говорят, что два и более объектов концентричны или коаксиальны, если они имеют один и тот же центр или ось. Окружности, правильные многоугольники, правильные многогранники и сферы могут быть концентричны друг другу (имея одну и ту же центральную точку), как могут быть концентричными и цилиндры (имея общую коаксиальную ось).

Подробнее: Концентричные объекты
Эпитрохо́ида (от греч. ἐπί — на, над, при и греч. τροχός — колесо) — плоская кривая, образуемая точкой, жёстко связанной с окружностью, катящейся по внешней стороне другой окружности.
Параболические координаты — ортогональная система координат на плоскости, в которой координатные линии являются конфокальными параболами. Трёхмерный вариант этой системы координат получается при вращении парабол вокруг их оси симметрии.
а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я